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Abstract

Mean dissipation rates〈ε〉 and〈χ〉 of the turbulent kinetic en-
ergy and of a passive scalar are important in the theory and
modelling of turbulent mixing. In reality, turbulence is usu-
ally not isotropic. Twelve velocity derivatives and three scalar
derivatives are required to compute these quantities, and so the
estimate of the dissipation rates presents a real challenge. We
overcome this by developing a spectral method that is tenable
for a wide range of Taylor microscale Reynolds numbers pro-
vided the small scales are not adversely affected by flow in-
homogeneities. The method applies to turbulent mixing for a
Prandtl number close to unity and excludes near-wall turbu-
lence. It involves juxtaposing a series of calibrated reference
spectra at increments of∆〈ε〉 and∆〈χ〉 to the measured spectra
to identify the best match. The technique is demonstrated by
applying it to previously published grid turbulence data.

Introduction

This paper presents an empirical method to estimate the mean
turbulent kinetic energy (TKE) and scalar variance dissipation
rates,〈ε〉 and〈χ〉 respectively, for turbulent mixing at a Prandtl
number close to unity. This work extends Djenidi and Antonia’s
(D&A) [5] “spectral chart” method of estimating〈ε〉 to include
the estimate of〈χ〉 for a passive scalar. The D&A method relies
on the assumption that the dissipative end of the spectrum scales
on 〈ε〉 and the kinematic viscosityν . This assumption is valid
for large values of the Taylor microscale Reynolds numberRλ
(= λu′/ν ; λ is the Taylor microscale andu is the streamwise ve-
locity fluctuation; a prime denotes the root-mean-square value)
as postulated in the similarity hypothesis of Kolmogorov [6],
but is equally tenable at small/moderateRλ provided any inho-
mogeneities in the flow do not affect the dissipative scales [5].
The extension of the method to a passive scalar is straightfor-
ward — the dissipative end of the spectrum is assumed to scale
on 〈ε〉, ν and〈χ〉. This assumption is tenable at largeRλ , as
enunciated in Obukhov’s [11] similarity hypothesis, but should
hold at small/moderateRλ .

The present method applies to the lower wavenumber region of
the dissipation range that is less susceptible to electronic noise
and imperfect spatial/temporal resolution of the measurement
probe(s). It does not have to rely on the presence of a “−5/3”
inertial range associated with largeRλ [6], and no calculations
of velocity or scalar derivatives are required [5]. For conve-
nience, a “Pope” model spectrum [12] may be used to calibrate
with a reliable reference spectrum — either from direct numer-
ical simulations (DNS) or from sufficiently well resolved mea-
surements, as discussed in [5]. The model spectrum is then plot-
ted in dimensional form to provide the clearest comparison with
the measured spectrum. By identifying the model spectrum that
most closely matches the measured spectrum in the dissipation
range, the actual value for the mean dissipation rates can be
easily determined [5]. In the following sections, the method is
described in more detail and tested against available grid tur-
bulence data. The test is by no means exhaustive but serves to
demonstrate that the technique is robust.

The mean dissipation rates

In turbulent mixing, the mean dissipation rates for the TKE and
the scalar variance are defined by the followingtensorialforms

〈ε〉 = (1/2)ν〈(∂ui/∂x j +∂u j/∂xi)
2〉 , (1)

〈χ〉 = κ〈(∂θ/∂xi)
2〉 , (2)

whereκ is the scalar diffusivity. The mean TKE is defined as
q′2 = u′2+v′2+w′2 (u is the streamwise component of velocity
fluctuation;v andw are the cross-stream components) and the
scalar variance isθ ′2. For “isotropic” turbulence, (1) and (2)
simplify to the following expressions

〈εiso〉 = 15ν〈(∂u/∂x)2〉= 15ν
∫ ∞

0
k2

1φu(k1)dk1 , (3)

〈χiso〉 = 3κ〈(∂θ/∂x)2〉= 3κ
∫ ∞

0
k2

1φθ (k1)dk1 , (4)

whereφu andφθ are the spectral densities foru andθ respec-
tively, andk1 is the one-dimensional wavenumber. For approxi-
mately isotropic grid turbulence [17], the mean dissipation rates
are obtained from the transport equations forq′2 andθ ′2, i.e.

〈εd〉 = −(Uo/2)(dq′2/dx) , (5)

〈χd〉 = −(Uo/2)(dθ ′2/dx) , (6)

where the subscript “d” denotes measurements of〈ε〉 and〈χ〉
obtained from the rates of decay ofq′2 andθ ′2 at a free-stream
velocity of Uo. From their simultaneous measurements of all
three components of velocity and scalar fluctuations, Zhouet
al. [17] demonstrated that both sets of equations yield nearly
the same results for grid turbulence, i.e. the ratios〈εd〉/〈εiso〉
and〈χd〉/〈χiso〉 are≈ 1±0.1.

The power spectra

According to Kolmogorov’s [6] similarity hypothesis, the nor-
malised streamwise velocity (u) spectrum may be represented
as a universal function of the form

fu(k1η) =
φu(k1)

ν5/4〈ε〉1/4
=

φu(k1)

uK
2η

, (7)

whereη = ν3/4/〈ε〉1/4 anduK = ν1/4〈ε〉1/4 are the respective
Kolmogorov length and velocity. When a passive scalar is in-
troduced in a stream, it does not affect the dynamics of the flow.
For a Prandtl number (Pr = ν/κ) close to unity, the normalised
scalar (θ ) spectrum may be expressed as a universal function
[4, 11]

fθ (k1η) =
φθ (k1)

ν5/4〈ε〉−3/4〈χ〉
=

φθ (k1)

θK
2η

(8)

with the scalar variableθK = 〈χ〉1/2ν1/4/〈ε〉1/4. ProvidedRλ
is very large (>∼103) and the flow is reasonably independent of
ν , (7) and (8) may be written in thecompensatedforms [8]

φu(k1)

〈ε〉2/3k−5/3
1

= Cu
+(k1η)5/3−mu , (9)

φθ (k1)

〈ε〉−1/3〈χ〉k−5/3
1

= Cθ
+(k1η)5/3−mθ , (10)



which exhibit a “−5/3” power-law behaviour in the “inertial”
or more vigorously “scaling” range. Formu = mθ = 5/3, the
respective Kolmogorov and Obukhov-Corrsin coefficientsCu

+

andCθ
+ may be considered quasi-universal [8]. AsRλ de-

creases (< 103), the low-wavenumber end of theu andθ spectra
peels off from the “−5/3” slope. This is accompanied by a nar-
rowing of the scaling range and a departure ofCu

+ andCθ
+

from their universality [8].

It is well established that, for a wide range ofRλ , power spec-
tra normalised by the Kolmogorov-type variables (η , uK and
θK ) exhibit reasonable collapse in both the higher wavenumber
region of the scaling range (0.01<∼k1η < 0.1) and the lower re-
gion of the dissipation range (0.1<∼k1η < 1). While electronic
noise and finite measurement resolution can prevent reliable es-
timates of the spectra atk1η >

∼1 [5], the adequacy of the Kol-
mogorov scaling is indirectly demonstrated by the fact that the
second-order structure functions〈(δu∗)2〉 and〈(δθ∗)2〉, for ex-
ample [2], collapse at small increments in the range 1<

∼ r∗<∼10,
whereδψ = ψ(x+ r)−ψ(x) andψ = u, θ (an asterisk denotes
normalisation by the Kolmogorov-type variables).

Application of the spectral method

Since grid turbulence is sufficiently isotropic to allow simpler
and more reliable estimates of〈ε〉 and〈χ〉, i.e. (3)–(6), the Kol-
mogorov normalised spectra (9) and (10) for grid turbulence
should be reasonably accurate. In Figure 1(a), the measured
spectra, like the DNS spectra reviewed by D&A [5], show ade-
quate collapse in the range 0.1<∼k∗1 < 1. Figure 1(b) shows that,
although there are fewer published scalar spectra forRλ > 100,
the spectra have a similar collapse in the same range ofk∗1. Note
that, in Figure 1,φu andφθ are weighted byk1

2 (i.e. the scaling
range exhibits a “1/3” power-law behaviour), this is so that we
can more clearly observe the shape of the spectra in the dissipa-
tion range of the wavenumbers. For comparison, we included in
Figure 1 some recently published spectra from the DNS data set
of [1]. The simulation is for turbulent mixing in a channel flow
at Rλ ≈ 90; high spatial resolution (∆x∗ = 1.16, ∆y∗ = 1.33,
∆z∗ = 0.77) allows extension of the spectra to slightly higher
wavenumbers and precise determination of the mean dissipa-
tion rates. The Kolmogorov normalised DNS spectra are taken
at the centreline withh+ = uτ h/ν = 1020, whereuτ is the fric-
tion velocity,h is the half width of the channel and the super-
script “+” denotes normalisation by wall units [1]. Note that all
the spectra reproduced in Figure 1 are as obtained from the pub-
lished literature. The fact that theu andθ spectra collapse at the
high wavenumbers reinforces the validity of the Kolmogorov-
Obukhov-Corrsin scaling for a wide range ofRλ . It is thus pos-
sible to obtain a “model” of a universal spectrum foru andθ .
For theu spectrum, we use the analytical expression adapted
from that outlined in D&A [5] and Pope [12], i.e.

φu(k1)

uK
2η

≡ φ∗
u (k

∗
1) = (k∗1)

−5/3 fu(k
∗
1) ,

fu(k
∗
1) = Cu1×exp{−Cu2[(k

∗
1

4+Cu3
4)1/4−Cu3]} , (11)

where the coefficientsCui (i = 1, 2 and 3) are positive.
Other alternatives such as the simplified (Cu3 = 0) exponen-
tial form fu(k∗1) =Cu1×exp{−Cu2k∗1} and the “Pao” spectrum

fu(k∗1) =Cu1×exp{−(3/2)Cu2k∗1
4/3} may be used but they of-

fer less control of the curve fit [12]. To have the analytical
model consistent for both the velocity and the passive scalar,
we use the following expression for theθ spectrum that is anal-
ogous to (11), i.e.

φθ (k1)

θK
2η

≡ φ∗
θ (k

∗
1) = (k∗1)

−5/3 fθ (k
∗
1) ,

fθ (k
∗
1) = Cθ1×exp{−Cθ2[(k

∗
1

4+Cθ3
4)1/4−Cθ3]} , (12)
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Figure 1: Kolmogorov normalisedu andθ spectra for grid tur-
bulence using the (input) values〈ε〉 and〈χ〉 reported in litera-
ture; for details of the symbols, see Table 1. For comparison,
the DNS spectra (▽) [1] taken at the centreline of a fully de-
veloped turbulent channel flow (h+ = 1020;Rλ ≈ 90) are used.
For the solid black curves, (11) and (12) are used.

where the coefficientsCθ i (i = 1, 2 and 3) are also positive.
Note that the functions fu(k∗1) and fθ (k∗1) determine the shape of
the spectra in the dissipation range only. In the inertial/scaling
range (k∗1 < 0.1), these functions are essentially unity so that
the “−5/3” power laws of the expressions (11) and (12) are
recovered. To ensure a consistent treatment for all spectra re-
ported in this work, the following coefficients, obtained by trial-
and-error to minimise the least-squares difference between the
model spectra and the “reference” (DNS) spectra in Figure 1,
are keptconstant, i.e.

Cu1 = 0.4, Cu2 = 6.0 and Cu3 = 0.1 ,

Cθ1 = 0.7, Cθ2 = 5.5 and Cθ3 = 0.3 .

The use of an analytical model offers a more clear cut approach
to calibrating the reference spectra. Although it is just as valid
to useanywell resolved spectra, it is perhaps more convenient
to implement the model coefficients sinceCui andCθ i can be
easily updated to match the better resolved spectra.

Table 1 shows a collection of previously published data for
Rλ = 35 to 1362, where the spectra, the mean dissipation rates
andUo are reported. The turbulence can be generated either
by a passive grid or an active grid. Figure 2 shows the pro-
cess of estimating the actual values〈ε〉N and〈χ〉N by using the
information given in Table 1. The initial estimates are taken
from published values based on either isotropic assumptions (3)
and (4) or decaying grid turbulence (5) and (6). From here, the
estimated Kolmogorov (velocity) and Obukhov-Corrsin (scalar)
variables can then be used to (un)normalise the spectra, viz.

2π
Uo

f = k1 = k∗1/η , (13)

Uo

2π
φψ ( f ) = φψ (k1) = ηφψ (k

∗
1) = ηψK

2φ∗
ψ (k

∗
1) , (14)

whereψ = u,θ . By takingi-th iterations of∆〈ε〉 and∆〈χ〉, we
obtain a family of model curves in juxtapositions to the mea-
sured spectra (Figure 3);φψ ( f ) is essentially used to avoid po-
tential damping effect on〈ε〉 by the Kolmogorov scaling, e.g.
〈ε〉1/4. In Table 1, the difference between the input value and



Input
〈ε〉, ν , 〈χ〉

Calculate
ηi , uKi , θKi

Input
φu( f ), φθ ( f )

Initialise
or iterate
〈ε〉i , 〈χ〉i

Calculate
φ∗

u (k
∗
1),

φ∗
θ (k

∗
1)

Visual match
to φu( f )ref,

φθ ( f )ref,
φ∗

u (k
∗
1)ref,

φ∗
θ (k

∗
1)ref?

Output
〈ε〉N ,〈χ〉N

Yes;i=N
No;i= i+1

Figure 2: The spectral method uses an iterative process to esti-
mate〈ε〉N and〈χ〉N . Once there is a visual match between the
measured and reference spectra, the process stops.
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Figure 3: Example showing application of the spectral method
to slightly heated grid turbulence data (• Rλ = 35.2) [16].

the output value for the mean dissipation rates is kept to a min-
imum, i.e.∆ is kept as close to 1 as possible, while providing
the best visual fit of the model curves to the measuredu and
θ spectra in the dissipation range. Figure 4 shows that, by us-
ing 〈ε〉N = ∆〈ε〉 and 〈χ〉N = ∆〈χ〉 obtained from the spectral
method, the Kolmogorov normalisedu andθ spectra exhibit a
slightly better collapse in the dissipation range (0.1<∼k1η < 1).
For the present review data (Table 1), the typical value of∆
lies between 0.55 and 1.35. The extent of the departure from
∆ = 1 may reflect the quality of the data or the uncertainty asso-
ciated with estimating both the power spectra (using fast Fourier
transform) and the mean dissipation rates. Possible factors con-
tributing to the measurement uncertainty include contamination
by electronic noise, imperfect resolution of the measurement
probe(s) and non-negligible departures from isotropy. Given
the uncertainty, the estimated values (〈ε〉N , 〈χ〉N ) remain close
to those (〈ε〉, 〈χ〉) published in the literature — the difference is
<
∼45% (Table 1). This should lend support to the validity of the
spectral method and the universality of the model spectra (11)
and (12) used to develop the method. This in turn implies that
it would be worthwhile to assess the adequacy of the present
technique on other turbulent flows, namely the mixing layer of
jets and wakes, and geophysical turbulence.
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Figure 4: Kolmogorov normalisedu andθ spectra for grid tur-
bulence using the iterated (output) values〈ε〉N and 〈χ〉N ; for
details of the symbols, see Table 1.

Concluding remarks

A simple method for determining the mean dissipation rates
(〈ε〉, 〈χ〉) in turbulent mixing has been presented and tested.
The method essentially matches measuredu and θ spectra to
universal spectra over the smaller wavenumber end of the dis-
sipation range. The key assumption for the method is that the
Kolmogorov-Obukhov-Corrsin (KOC) similarity holds for the
dissipative scales even whenRλ is not very large (≥ 35 for the
present work). This is justifiable when the smallest scales of in-
terest are not adversely affected by flow inhomogeneities. The
method has the following advantages: (1) it uses the KOC scal-
ing that is sufficiently robust and can be applied to (different)
turbulent flows over a wide range ofRλ , (2) it provides imme-
diate visual assessment of the quality of the measured spectra
relative to the universal spectra, and (3) it avoids the need to
calculate〈ε〉 and〈χ〉 using any of the relations (1) to (6).
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Table 1: Test of the spectral method using (slightly heated) grid turbulence data;〈ε〉 and 〈χ〉 are the previously published values;
〈ε〉N =∆〈ε〉 and〈χ〉N =∆〈χ〉 are the iterated values obtained from the spectral method (Figure 2).

Input Input Output

Reference φu, φθ Grid flow Uo Rλ 〈ε〉 〈χ〉 〈ε〉N 〈χ〉N Symbol

spectrum Passive/Active (mode) (m/s) (= λu′/ν) (m2/s3) (oC2/s) (m2/s3) (oC2/s)
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