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Abstract

Mean dissipation rate&) and(x) of the turbulent kinetic en-
ergy and of a passive scalar are important in the theory and
modelling of turbulent mixing. In reality, turbulence is usu-
ally not isotropic. Twelve velocity derivatives and three scalar
derivatives are required to compute these quantities, and so the
estimate of the dissipation rates presents a real challenge. We
overcome this by developing a spectral method that is tenable
for a wide range of Taylor microscale Reynolds numbers pro-
vided the small scales are not adversely affected by flow in-
homogeneities. The method applies to turbulent mixing for a
Prandtl number close to unity and excludes near-wall turbu-
lence. It involves juxtaposing a series of calibrated reference
spectra at increments Afe) andA(x) to the measured spectra

to identify the best match. The technique is demonstrated by
applying it to previously published grid turbulence data.

Introduction

This paper presents an empirical method to estimate the mean
turbulent kinetic energy (TKE) and scalar variance dissipation
rates,(¢) and(x) respectively, for turbulent mixing at a Prandtl
number close to unity. This work extends Djenidi and Antonia’s
(D&A) [5] “spectral chart” method of estimatinge) to include

the estimate of) for a passive scalar. The D&A method relies
on the assumption that the dissipative end of the spectrum scales
on (¢) and the kinematic viscosity. This assumption is valid

for large values of the Taylor microscale Reynolds nunf®er
(=AU/v; A is the Taylor microscale andis the streamwise ve-
locity fluctuation; a prime denotes the root-mean-square value)
as postulated in the similarity hypothesis of Kolmogorov [6],
but is equally tenable at small/moder&g provided any inho-
mogeneities in the flow do not affect the dissipative scales [5].
The extension of the method to a passive scalar is straightfor-
ward — the dissipative end of the spectrum is assumed to scale
on (g), v and(x). This assumption is tenable at larBg, as
enunciated in Obukhov’s [11] similarity hypothesis, but should
hold at small/moderatg, .

The present method applies to the lower wavenumber region of
the dissipation range that is less susceptible to electronic noise
and imperfect spatial/temporal resolution of the measurement
probe(s). It does not have to rely on the presence 6f%/3”
inertial range associated with lar@g [6], and no calculations

of velocity or scalar derivatives are required [5]. For conve-
nience, a “Pope” model spectrum [12] may be used to calibrate
with a reliable reference spectrum — either from direct numer-
ical simulations (DNS) or from sufficiently well resolved mea-
surements, as discussed in [5]. The model spectrum is then plot-
ted in dimensional form to provide the clearest comparison with
the measured spectrum. By identifying the model spectrum that
most closely matches the measured spectrum in the dissipation
range, the actual value for the mean dissipation rates can be
easily determined [5]. In the following sections, the method is
described in more detail and tested against available grid tur-
bulence data. The test is by no means exhaustive but serves to
demonstrate that the technique is robust.

The mean dissipation rates

In turbulent mixing, the mean dissipation rates for the TKE and
the scalar variance are defined by the followiegsorialforms

(&) = (1/2)v{(dui/dx} +duj/d%)?) , @)
(X) = K((06/0%)?) , )

wherek is the scalar diffusivity. The mean TKE is defined as
a2 = u?2+v2+w?2 (uis the streamwise component of velocity
fluctuation;v andw are the cross-stream components) and the
scalar variance i§'2. For “isotropic” turbulence, (1) and (2)
simplify to the following expressions

(&is0) = 15V((du/dx)?) = 15v /O N Kai(ky)dk ,  (3)

(Xiso) = 3((00/0%%) = 3 | Kgpla)dla.  (4)
whereq, and @y are the spectral densities forand 8 respec-
tively, andk; is the one-dimensional wavenumber. For approxi-
mately isotropic grid turbulence [17], the mean dissipation rates
are obtained from the transport equationsdérand6’, i.e.

(gd) = —(Uo/2)(dq?/dx) , (5)
(Xa) = —(Uo/2)(d6"%/dx) , (6)

where the subscript “d” denotes measurement&epfand ()
obtained from the rates of decay@f and6'? at a free-stream
velocity of Ug. From their simultaneous measurements of all
three components of velocity and scalar fluctuations, Zétou
al. [17] demonstrated that both sets of equations yield nearly
the same results for grid turbulence, i.e. the ratigs /(&iso)
and(xq)/(Xiso) are~ 1+0.1.

The power spectra

According to Kolmogorov’s [6] similarity hypothesis, the nor-
malised streamwise velocityl spectrum may be represented
as a universal function of the form

k) k)
fu(kln) = V5/4EE:;1/4 = uK(zr:; s

()

wheren = v¥4/(g)V/* andu, = v1/4(¢)1/4 are the respective
Kolmogorov length and velocity. When a passive scalar is in-
troduced in a stream, it does not affect the dynamics of the flow.
For a Prandtl numbeP{ = v/k) close to unity, the normalised
scalar @) spectrum may be expressed as a universal function

[4,11]

pwk) k) ®)
(&%4x)  62n
with the scalar variabl®, = (x)¥/?v1/4/(g)}/4. Providedr,

is very large £ 10°%) and the flow is reasonably independent of
v, (7) and (8) may be written in theompensatefbrms [8]
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which exhibit a “-5/3” power-law behaviour in the “inertial”
or more vigorously “scaling” range. Fan, =my =5/3, the
respective Kolmogorov and Obukhov-Corrsin coefficie@i$
andCg™ may be considered quasi-universal [8]. Rs de-
creases< 10°), the low-wavenumber end of theand8 spectra
peels off from the “-5/3" slope. This is accompanied by a nar-
rowing of the scaling range and a departureCof andCg™
from their universality [8].

It is well established that, for a wide rangeRf, power spec-

tra normalised by the Kolmogorov-type variableg, 4, and

6,) exhibit reasonable collapse in both the higher wavenumber
region of the scaling range @ <k;n < 0.1) and the lower re-
gion of the dissipation range (S kin < 1). While electronic
noise and finite measurement resolution can prevent reliable es-
timates of the spectra &in 21 [5], the adequacy of the Kol-
mogorov scaling is indirectly demonstrated by the fact that the
second-order structure functiof®u*)?) and((56*)2), for ex-
ample [2], collapse at small increments in the ranga 1< 10,
wheredy = Y(x+r) — Y(x) andy = u, 8 (an asterisk denotes
normalisation by the Kolmogorov-type variables).

Application of the spectral method

Since grid turbulence is sufficiently isotropic to allow simpler
and more reliable estimates @f) and(x), i.e. (3)—(6), the Kol-
mogorov normalised spectra (9) and (10) for grid turbulence
should be reasonably accurate. In Figure 1(a), the measured
spectra, like the DNS spectra reviewed by D&A [5], show ade-
quate collapse in the rangel(Sk; < 1. Figure 1(b) shows that,
although there are fewer published scalar spectr&{ar 100,

the spectra have a similar collapse in the same rangg dfote

that, in Figure 1, andgy are weighted bk, 2 (i.e. the scaling
range exhibits a “13” power-law behaviour), this is so that we
can more clearly observe the shape of the spectra in the dissipa-
tion range of the wavenumbers. For comparison, we included in
Figure 1 some recently published spectra from the DNS data set
of [1]. The simulation is for turbulent mixing in a channel flow

at Ry =~ 90; high spatial resolutionAk* = 1.16, Ay* = 1.33,

Az* = 0.77) allows extension of the spectra to slightly higher
wavenumbers and precise determination of the mean dissipa-
tion rates. The Kolmogorov normalised DNS spectra are taken
at the centreline with™ = u:h/v = 1020, wherey, is the fric-

tion velocity, h is the half width of the channel and the super-
script “+” denotes normalisation by wall units [1]. Note that all
the spectra reproduced in Figure 1 are as obtained from the pub-
lished literature. The fact that theand8 spectra collapse at the
high wavenumbers reinforces the validity of the Kolmogorov-
Obukhov-Corrsin scaling for a wide rangeR. It is thus pos-
sible to obtain a “model” of a universal spectrum foand6.

For theu spectrum, we use the analytical expression adapted
from that outlined in D&A [5] and Pope [12], i.e.

L) = i) - (k) 1),

fu(k}) = Cur x exp{—Cua[(K5* + Ce®) /4 —Clal} . (12)

where the coefficientCy; (i = 1, 2 and 3) are positive.
Other alternatives such as the simplifiggi,{ = 0) exponen-

tial form fy(k}) = Cy1 x exp{—C2ki } and the “Pao” spectrum
fu(ky) = Cu1 x exp{—(3/2)CU2k14/3} may be used but they of-
fer less control of the curve fit [12]. To have the analytical
model consistent for both the velocity and the passive scalar,
we use the following expression for tifespectrum that is anal-
ogous to (11), i.e.

k S 1k ) — *
B _ o) = (k)53 10(k0)
6.7n

fo (ki) = Co1 x exp{—Ca2[(K;* +Cos™)¥/* — Cogl} , (12)
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Figure 1: Kolmogorov normaliseulll and@ spectra for grid tur-
bulence using the (input) valugs) and (x) reported in litera-
ture; for details of the symbols, see Table 1. For comparison,
the DNS spectray() [1] taken at the centreline of a fully de-
veloped turbulent channel flova{ = 1020;R, ~ 90) are used.
For the solid black curves, (11) and (12) are used.

where the coefficient€g; (i = 1, 2 and 3) are also positive.
Note that the functions,fk;) and (ki) determine the shape of
the spectra in the dissipation range only. In the inertial/scaling
range ki < 0.1), these functions are essentially unity so that
the “—5/3” power laws of the expressions (11) and (12) are
recovered. To ensure a consistent treatment for all spectra re-
ported in this work, the following coefficients, obtained by trial-
and-error to minimise the least-squares difference between the
model spectra and the “reference” (DNS) spectra in Figure 1,
are keptconstanti.e.

Cin=04, Cpp=60 andC;3=01,
Cg1 =07, Cgop=5.5 andCy3=0.3.

The use of an analytical model offers a more clear cut approach
to calibrating the reference spectra. Although it is just as valid
to useanywell resolved spectra, it is perhaps more convenient
to implement the model coefficients sinCg andCg; can be
easily updated to match the better resolved spectra.

Table 1 shows a collection of previously published data for
R, = 35to0 1362, where the spectra, the mean dissipation rates
andU, are reported. The turbulence can be generated either
by a passive grid or an active grid. Figure 2 shows the pro-
cess of estimating the actual valugs, and(x), by using the
information given in Table 1. The initial estimates are taken
from published values based on either isotropic assumptions (3)
and (4) or decaying grid turbulence (5) and (6). From here, the
estimated Kolmogorov (velocity) and Obukhov-Corrsin (scalar)
variables can then be used to (un)normalise the spectra, viz.

ot =k =ki/n, 13)
2 gy () = aylka) = n0p(ki) = N ), (1)

wherey = u, 8. By takingi-th iterations ofA(€) andA(x), we
obtain a family of model curves in juxtapositions to the mea-
sured spectra (Figure 3y () is essentially used to avoid po-
tential damping effect orie) by the Kolmogorov scaling, e.g.
(€)Y/4. In Table 1, the difference between the input value and
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Figure 2: The spectral method uses an iterative process to esti-
mate(e), and(x),. Once there is a visual match between the
measured and reference spectra, the process stops.
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Figure 3: Example showing application of the spectral method
to slightly heated grid turbulence daweR, = 35.2) [16].

the output value for the mean dissipation rates is kept to a min-
imum, i.e.A is kept as close to 1 as possible, while providing
the best visual fit of the model curves to the measurechd

0 spectra in the dissipation range. Figure 4 shows that, by us-
ing (&), = A(e) and(x), = A(x) obtained from the spectral
method, the Kolmogorov normalisedand 6 spectra exhibit a
slightly better collapse in the dissipation rangel(@k.n < 1).

For the present review data (Table 1), the typical valué\ of
lies between 0.55 and 1.35. The extent of the departure from
A =1 may reflect the quality of the data or the uncertainty asso-
ciated with estimating both the power spectra (using fast Fourier
transform) and the mean dissipation rates. Possible factors con-
tributing to the measurement uncertainty include contamination
by electronic noise, imperfect resolution of the measurement
probe(s) and non-negligible departures from isotropy. Given
the uncertainty, the estimated valués)(,, (x),) remain close

to those (g), (x)) published in the literature — the difference is
<45% (Table 1). This should lend support to the validity of the
spectral method and the universality of the model spectra (11)
and (12) used to develop the method. This in turn implies that
it would be worthwhile to assess the adequacy of the present
technique on other turbulent flows, namely the mixing layer of
jets and wakes, and geophysical turbulence.
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Figure 4: Kolmogorov normalisedand 8 spectra for grid tur-
bulence using the iterated (output) values, and(x),; for
details of the symbols, see Table 1.

Concluding remarks

A simple method for determining the mean dissipation rates
({€), (x)) in turbulent mixing has been presented and tested.
The method essentially matches measwethd 6 spectra to
universal spectra over the smaller wavenumber end of the dis-
sipation range. The key assumption for the method is that the
Kolmogorov-Obukhov-Corrsin (KOC) similarity holds for the
dissipative scales even wh&y is not very large & 35 for the
present work). This is justifiable when the smallest scales of in-
terest are not adversely affected by flow inhomogeneities. The
method has the following advantages: (1) it uses the KOC scal-
ing that is sufficiently robust and can be applied to (different)
turbulent flows over a wide range &, (2) it provides imme-
diate visual assessment of the quality of the measured spectra
relative to the universal spectra, and (3) it avoids the need to
calculate(e) and(x) using any of the relations (1) to (6).
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